If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2=1600
We move all terms to the left:
10x^2-(1600)=0
a = 10; b = 0; c = -1600;
Δ = b2-4ac
Δ = 02-4·10·(-1600)
Δ = 64000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{64000}=\sqrt{6400*10}=\sqrt{6400}*\sqrt{10}=80\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{10}}{2*10}=\frac{0-80\sqrt{10}}{20} =-\frac{80\sqrt{10}}{20} =-4\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{10}}{2*10}=\frac{0+80\sqrt{10}}{20} =\frac{80\sqrt{10}}{20} =4\sqrt{10} $
| (x)=x^2-576 | | 6x+20=x+20 | | 15z^2+6z=9 | | 7x-320=60-x | | 7x-320=60-× | | 212x=37 | | 292x+3)-7x=23-5(x+3x) | | 1.2x+7=x+13 | | 2x+45=25-x | | 40x+10(1.5x)=1440 | | 15=15-2x | | 5t-9=t=19 | | 40x+10(1.5x)=24000 | | 3s-14=10s-70 | | 5(-7x+6)=205 | | 7w=45.5 | | (2x/x-2)+3=4/x-2 | | 3(7-3x)=66 | | (40x)+(1.5x)=24000 | | 2w-80=w-38 | | 2^n-3=n+1 | | 8(n+6.6)=56 | | -72=9(r-10) | | x=5x-68 | | 21=3.14d | | 3192=38(p+25) | | 3,192=38(p+25) | | 4(-3x-10)=-184 | | .35x=95 | | 3192=38(p+25) | | 2t-77=t-31 | | 5472=48(p+25) |